
Topic: Particle in a Three Dimensional Box 

Wave function 

In quantum physics, a wave function is a mathematical description of a quantum state of a 

particle as a function of momentum, time, position and spin. The symbol used for a wave 

function is a Greek letter called psi, ψ. It helps us to know the probability of finding particle 

within the matter  

Some properties of wave function 

 All measurable information about the particle is available. 

 ψ should be continuous and single-valued. 

 It should be finite. 

 It should be square Integrable. 

 ψ 2 gives us probability of finding the particle.   

  



Particle in a 3D Box 

A real box has three dimensions. Consider a particle which can move freely with in rectangular 

box of dimensions a × b × c with impenetrable walls. The potential can be written 

mathematically as; 
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Since the wavefunction ψ should be well behaved, so, 

it must vanish everywhere outside the box. By the 

continuity requirement, the wavefunction must also 

vanish in the six surfaces of the box. Orienting the box 

so its edges are parallel to the cartesian axes, with one 

corner at (0,0,0), the following boundary conditions must be satisfied: 

ψ(x,y, z) = 0 when x = 0, x = a, y = 0, y = b, z = 0 or z = c  

Inside the box, where the potential energy is everywhere zero, the Hamiltonian is simply the 

three-dimensional kinetic energy operator and the Schrodinger equation reads 
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Since we can write ψ(x,y, z) = X(x)Y(y)Z(z), with condition X(x) is independent of y and z 

coordinates. Also, Y(y) and Z(z) are only functions of y and z, respectively. The boundary 

conditions are 

X(0) = X(a) = 0, Y (0) = Y (b) = 0, Z(0) = Z(c) = 0    (2) 

So, on substituting (x,y, z) = X(x)Y(y)Z(z) into Schrodinger equation we obtain 
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 Each of the first three terms depends on one variable only, independent of the other two. We can 

write it as; 
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Now on left hand side (LHS) we have only function of x, while right hand side (RHS) contains 

functions of y and z. This is possible only if each term separately equals a constant, say, −α2. So, 
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That implies 2
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 ; Using similar argument as above both sides of eqution should be 

equal to a constant, say, -ꞵ 2;  

Therefore, 2
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And  
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Now, LHS of above equation is just a constant so we can write it as a 2
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Thereby we have transformed a single Schrodinger equation (1) into three ordinary differential 

equations  

0" 2  XX  ; 0" 2  YY   and 0" 2  ZZ   

The constants α, ꞵ  and γ are related by 
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Each of the equations (4, 5 and 6) with its associated boundary conditions in (2) is equivalent to 

the one-dimensional problem. The normalized solutions X(x), Y (y), Z(z) can therefore be 

written down in complete analogy with one dimensional box 
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The constants in Eq (7) are given by 
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and the allowed energy levels are therefore 
















2

2

3

2

2

2

2

2

1

2

,,
8321 c

n

b

n

a

n

m

h
E nnn , n1, n2, n3 = 1, 2…   (11) 

Three quantum numbers are required to specify the state of this three dimensional system. The 

corresponding eigen-functions are 

c

xn
Sin

b

xn
Sin

a

xn
Sin

V
zyxnnn


 321

2/1

,,

8
),,(

321








     (12) 

where V = abc, the volume of the box. These eigen-functions form an ortho-normal set such that 
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Note that two eigen-functions will be orthogonal unless all three quantum numbers match. 



When the box has the symmetry of a cube, with a = b = c, the energy formula (11) simplifies to 
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Quantum systems with symmetry generally exhibit degeneracy in their energy levels. This means 

that there can exist distinct eigenfunctions which share the same eigenvalue. An eigenvalue 

which corresponds to a unique eigenfunction is termed nondegenerate while one which belongs 

to n different eigenfunctions is termed n-fold degenerate. As an example, we enumerate the first 

few levels for a cubic box, with 
321 ,, nnnE expressed in units in units of 22 8/ mah . 
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